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In this paper, we first establish quadrature formulas of trigonometric interpola-
tion type for proper integrals of periodic functions with periodic weight, then we
use the method of separation of singularities to derive those for corresponding
singular integrals with Hilbert kernel. The trigonometric precision, the type, the
estimate of the remainder, and the convergence of each quadrature formula derived
here are also established. � 1998 Academic Press

1. INTRODUCTION

In [1], the author systematically discussed singular quadrature formulas
with the highest trigonometric precision for the singular integral with
Hilbert kernel

(H f )(t)=|
2?

0
w({) f ({) cot

{&t
2

d{, t # [0, 2?), (1.1)

where w({) is a given non-negative function with period 2? which is known
as the weight function, f ({) is a function with period 2?, and the integral
is understood as the Cauchy principal value integral with (H f )(0)=
lim$ � 0 �2?&$

$ w({) f ({) cot 1
2{ d{. For its existence w({) and f ({) are

assumed further to be Ho� lder continuous, denoted as w, f # H2? .
In the present paper, we shall consider a kind of quadrature formulas for

(1.1) regarded as of quasi-interpolation type. The quadrature formulas with the
highest trigonometric precision established in [1] are also of this type, the
nodes of which must be chosen appropriately. Therefore they are not very con-
venient in applications. The nodes of a quadrature formula of this type may be
chosen arbitrarily, so it is sometimes more convenient in applications.

We first establish some results for trigonometric interpolation, then use
them to establish quadrature formulas of trigonometric interpolation type
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of proper integrals for periodic functions with periodic weight functions.
Finally we use the method of separation of singularities to derive quad-
rature formulas for (1.1). The trigonometric precision, the type, estimate of
the remainder, and the convergence of each quadrature formula derived
here are established. The application of these results in this paper to
methods for the numerical solution of singular integral equations with
Hilbert kernel will be given in a forthcoming paper.

2. TRIGONOMETRIC INTERPOLATION

Let H T
n denote the class of all trigonometric polynomials of degree not

greater than n. We regard H T
n =[0] if n<0.

Let H T
n (:) denote the family of trigonometric polynomials of the form

an sin(nt+:)+Tn&1(t), Tn&1 # H T
n&1, 0�:<?, (2.1)

in which an is called the coefficient of the term of degree n, and regard
H T

n (:)=[0] if n<0. It is obvious that any trigonometric polynomial of
degree n (n>0) cannot belong to two different classes H T

n (:1) and H T
n (:2)

(:1 {:2), while H T
0 (:) is [0] when :=0 and the set of all constants when

:{0.
For n different points t1 , t2 , ..., tn in [0, 2?), we set

2n({)= `
n

j=1

sin
{&tj

2
. (2.2)

For f # H2? we introduce the trigonometric interpolation operator (TIO) of
the form

(T2
n f )({)= :

n

j=1

T2
n, j({) f (tj), (2.3)

where

T2
n, j ({)={

2n({)
22$n(tj)

csc
{&tj

2
,

2n({) sin(({&tj)�2+:&,)
22$n(tj) sin(:&,)

csc
{&tj

2
,

if n is odd,

if n is even,
(2.4)

,=_?
2

&
1
2

:
n

r=1

tr &?
, (2.5)

0�:<?, :{,, (2.6)

and [%]? denotes the number congruent to % (mod ?) in [0, ?).
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Remark 2.1. When n=2m, 2n({) # H T
m(,), we call , the characteristic

number of 2n({).

Obviously,

T2
n, j # {H T

m&1 ,
H T

m(:),
if n=2m&1,
if n=2m,

(2.7)

therefore

T2
n : H2? � {H T

m&1 ,
H T

m(:),
if n=2m&1,
if n=2m.

(2.8)

Here T2
2m&1 is just the known classical trigonometric interpolation by

using an odd number of knots; T2
2m is called the trigonometric interpola-

tion in H T
m(:) by using an even number of knots [2,3].

Let

$2
n =I&T2

n , (2.9)

where I is the identity operator. Then $2
n is called the remainder of TIO

(2.3). By the uniqueness of the classical trigonometric interpolation and of
the trigonometric interpolation in H T

m(:) (cf. Lemma 2.1 in [2]), we have

Lemma 2.1.

ker [$2
n ]={H T

m&1 ,
H T

m(:),
if n=2m&1,
if n=2m.

Example 2.1. If we take :=[?�2+,]? , then

(T2
n f )({)={

:
n

j=1

2n({)
22$n(tj)

csc
{&tj

2
f (tj),

:
n

j=1

2n({)
22$n(tj)

cot
{&tj

2
f (tj),

if n is odd,

if n if even,
(2.10)

ker [$2
n ]={H T

m&1 ,
H T

m([?�2+,]?),
if n=2m&1,
if n=2m.

(2.11)

Such a trigonometric interpolation operator is said to be of normal form.
It is just the proximal interpolant given in [4] by Schoenberg.

When f possesses analyticity, we may give $2
n f a clear representation.

Assume that f is a 2?-periodic function analytic on the rectangular domain
Dr=[z, 0�Re z�2?, |Im z|�r] (r>0) with the boundary �Dr . We
denote f # AP(Dr) and discuss the remain of its TIO in the following.
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In the first place, we assume f # C$2? . Let

F({, t)={[ f ({)& f (t)] cot
{&t

2
, if {�t (mod 2?),

(2.12)

2 f $(t), if {#t (mod 2?).

It is obvious that F({, t) is a continuous function of { and t with period 2?.
Sometimes we treat t as a parameter and write F({, t) as Ft({).

Lemma 2.2. If f # H T
n (;), then Ft({) # H T

n ([ 1
2?+;]?), or, more precisely,

F({, t)=an[cos(n{+;)+cos(nt+;)]

+ :
n&1

j=1

[An& j (t) sin j{+Bn& j (t) cos j{], (2.13)

where an is the coefficient of the term of degree n of f, Aj and Bj # H T
j .

Proof. It is sufficient to prove the case f ({)=sin(n{+;). This is easy.
In fact, denoting w=ei{ and z=eit, we have

[sin(n{+;)&sin(nt+;)] cot
{&t

2

=
1
2

[ei;(wn&zn)+e&i;(w&n&z&n)]
w+z
w&z

=
1
2

ei; _wn+2 :
n&1

j=1

wn& jz j+zn&
+

1
2

e&i; _w&n+2 :
n&1

j=1

w&n+ jz& j+z&n&
=cos(n{+;)+cos(nt+;)

&2 :
n&1

j=1

[sin((n& j) t+;) sin j{&cos((n& j) t+;) cos j{].

Let

4n({, t)={_
2n({)&2n(t) cos

{&t
2 & csc

{&t
2

,

[2n({)&2n(t)] cot
{&t

2
,

if n=2m&1,

if n=2m.
(2.14)
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Lemma 2.3. For any fixed t,

4n( } , t) # {H T
m&1,

H T
m(:),

if n=2m&1,
if n=2m,

(2.15)

where : is given in Example 2.1.

Proof. The second conclusion follows immediately from (2.13) and
Remark 2.1. For the case n=2m&1, let pm&1({)=>n

j=2 sin 1
2 ({&tj) with

po=1, the conclusion results from (2.13) and

4n({, t)=sin
t&t1

2
[ pm&1({)& pm&1(t)] cot

{&1
2

+cos
t&t1

2
pm&1({).

(2.16)

Theorem 2.1. If f # AP(Dr), then

(T2
n f )({)=

1
4?i |�Dr

f (z)
4n({, z)

2n(z)
dz, (2.17)

($2
n f )({)={

1
4? |

�Dr

2n({)
2n(z)

f (z) csc
z&{

2
dz,

1
4?i |�Dr

2n({)
2n(z)

f (z) cot
z&{

2
dz,

if n=2m&1,

if n=2m,
(2.18)

or

($2
n f )({)={

1
2?

Re {i |
2?+ir

ir

2n({)
2n(z)

f (z) csc
z&{

2
dz= ,

(2.19)
if n=2m&1,

1
2?

Re {i |
2?+ir

ir

2n({)
2n(z)

f (z) cot
z&{

2
dz= ,

if n=2m,

and

&$2
n f &�coth \r

2+ & f &r &(2n)&1&r , (2.20)

where T2
n is a TIO of normal form and & }& and & }&r denote the sup-norms

of a function on [0, 2?] and the line-segment z=x+ir (0�x�2?), respec-
tively.
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Proof. We prove only the case n=2m&1; the case n=2n is similar. By
(2.16) and (2.13)

Tm&1({)=
1

4?i |�Dr

f (z)
4n({, z)
2n(z)

dz # H T
m&1. (2.21)

In (2.21), if 2n(0)=2n(2?)=0, we understand it as the Cauchy principal
value integral. Again by the residue theorem, for { in the interior of �Dr

f ({)=
1

4?i |�Dr

f (z) cot
z&{

2
dz, (2.22)

and this still holds for {=0 (2?) by the extended residue theorem due to
Jian-ke Lu [5, p. 75]. In fact,

1
4?i |�Dr

f (z) cot
z
2

dz=[sp(0) res(0)+sp(2?) res(2?)]= f (0),

where sp(x) denotes the span at x with respect to �Dr , for example,
sp(0)=sp(2?)= 1

2 , and res(x) the residue of the integrand f (z) cot z�2 at x.
Thus,

f ({)&Tm&1({)=
1

4?i |
�Dr

2n({)
2n(z)

f (z) csc
z&{

2
dz, (2.23)

in particular,

Tm&1(tj)= f (tj)=(T2
n f )(tj) ( j=1, ..., n).

Finally, by Lemma 2.1, we obtain (2.17) and (2.18). Noting that f possesses
the periodicity and the Schwarz symmetry (i.e., f (z� )=f (z)) by f (R)�R (R

denotes the set of real numbers), and the principle of the Schwarz sym-
metric extension, so does the integrand in (2.23). We obtain (2.19) from
(2.18); (2.20) follows from (2.19).

Remark 2.2. For further use, we need to rewrite (2.18) as

($2
n f )({)={

2n({)
4?i |

�Dr

f (z)
2n(z)

csc
z&{

2
dz,

2n({)
4?i |

�Dr

f (z)
2n(z)

cot
z&{

2
dz,

if n=2m&1,

if n=2m.
(2.24)

To do this, we understand the integrals appearing in the right-hand side of
(2.24) as the singular integrals when either 2n(0)=0 or {=0. In particular,
they are of higher order when both 2n(0)=0 and {=0 [5, 6].
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Remark 2.3. The method applied here is also valid for the general TIO
given in (2.3).

Example 2.2. Taking 2n({)=sin( 1
2n{+%) with an arbitrary real

number %, from (2.20) we obtain

&$2
n f &�coth ( 1

2r) sinh&1( 1
2 nr)& f &r=O(e&(1�2) nr) as n � �. (2.25)

Analogously, for the more general case, we have the following.

Corollary 2.1. If f # AP(Dr) then

&$2
n f &�coth ( 1

2r) & f &r sinh&n( 1
2r). (2.26)

In particular, if r>2 ln(1+- 2) then &$2
n f & � 0 as n � �.

3. QUADRATURE FORMULAS FOR PROPER INTEGRALS

In this section, we discuss the quadrature formulas for the proper
integral

D f =|
2?

0
w({) f ({) d{. (3.1)

It is well known that the general form of the quadrature formula for (3.1)
with the nodes [t1 , ..., tn] is

|
2?

0
w({) f ({) d{r :

n

j=1

Hj f (tj)=: Q2D
n f. (3.2)

The right-hand side is known as the quadrature sum.
We may arbitrarily choose the nodes [tj] and the coefficients [Hj], in

as much as the structure of the quadrature formula is arbitrary. Certainly,
we hope that (3.2) will possess suitable accuracy for the class of tri-
gonometric polynomials through the appropriate choice of [tj] and [Hj].

Let

R2D
n f =D f &Q2D

n f (3.3)

which is called the remainder of (3.2).

Definition 3.1. If H T
m&1 �ker [R2D

n ], but there exists some Tm # H T
m

such that R2D
n Tm {0, then we define the quadrature formula (3.2) to have

the trigonometric precision of order m&1, denoted as pr(Q2D
n )=m&1.
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We mention that (3.2) does not possess the trigonometric precision of
order n, however we choose [tj] and [Hj]. This may be easily seen by con-
sidering the trigonometric polynomial 22

n . But from [1], we know that
there exists the quadrature formula with the trigonometric precision of
order pr(Q2D

n )=n&1. For such a quadrature formula with the highest tri-
gonometric precision, the nodes must be chosen suitably. We may both
arbitrarily choose the nodes and ensure that the quadrature formula
obtained possesses a certain trigonometric precision.

Definition 3.2. If pr(Q2D
n )�[ 1

2(n&1)], we say (3.2) is the quadrature
formula of interpolation type, where |x| denotes the integral part of x.

We set

Q2D
n f =DT2

n f, (3.4)

where T2
n is given by (2.3). Then (3.2) is the quadrature formula of tri-

gonometric interpolation type by Lemma 2.1 and

Hj={
1

22$n(tj) |
2?

0
w({) 2n({) csc

{&tj

2
d{,

(3.5)
if n=2m&1,

1
22$n(tj) |

2?

0
w({) 2n({)

sin[(1�2)({&tj)+:&,]
sin(:&,)

csc
{&tj

2
d{,

if n=2m.

On the other hand, for the case n=2m&1 (odd), if (3.2) is of
trigonometric interpolation type, then for T2

n, j in (2.4), D(T2
n, j)=

Q2D
n (T2

n, j)=Hj , i.e., Hj is given by (3.5). Therefore the quadrature formula
of trigonometric interpolation type is unique for the fixed nodes [tj].

Theorem 3.1. In case n=2m&1 (odd), the quadrature formula (3.2) is
of trigonometric interpolation type iff its coefficients

Hj=
1

22$n(tj) |
2?

0
w({) 2n({) csc

{&tj

2
d{ ( j=1, ..., n). (3.6)

In case n=2m (even), for the fixed set of notes [tj], the quadrature
formula of trigonometric interpolation type is not unique in general. To see
this, we must introduce the concept of the type of quadrature formula (3.2).

It is interesting to note that there is an essential difference between the
concepts of algebraic precision and of trigonometric precision. A quad-
rature formula having the algebraic precision of order m&1 is not exact for
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any algebraic polynomial of degree m, but a quadrature formula having the
trigonometric precision of order m&1 is exact for certain trigonometric
polynomials of degree m and not so for the rest. This will be verified as
follows.

Definition 3.3. If pr(Q2D
n )=m&1 and H T

m(:)�ker (R2D
n ), we say

(3.2) is of H T
m(:) type, denoted as ty[Q2D

n ]=H T
m(:).

Obviously, (3.2) could not possess two different types. In fact, if
ty[Q2D

n ]=H T
m(:) and ty[Q2D

n ]=H T
m(;) with :{;, then both sin m{ and

cos m{ belong to ker [R2D
n ]. Thus pr(Q2D

n )�m, which is a contradiction.
Moreover, any quadrature formula possesses some type. If pr(Q2D

n )=
m&1, setting f ({)=cos m{ and g({)=sin m{, we know either
cm=R2D

n ( f ){0 or sm=R2D
n (g){0. Taking

:={arc ctg \&
cm

sm+ , if sm {0,
(3.7)

0, if sm=0,

and �({)=sin(m{+:), we have R2D
n (�)=0.

Definition 3.4. If ty[Q2D
n ]$H T

r (:) where r=[ 1
2 (n+1)], we then

define (3.2) to be of :-interpolation type.

Obviously, a quadrature formula of :-interpolation type is surely of
interpolation type. For n=2m&1 (odd), by Theorem 3.1 there exists only
a quadrature formula of :-interpolation type and : is just that given in
(3.7). Therefore the trigonometric precision of a quadrature formula may
completely portray the character of its interpolation. But for n=2m (even)
there are many different quadrature formulas of interpolation type, more
specifically, there is one quadrature formula of :-interpolation type at least
for each : ({,), and so the character of a quadrature formula of inter-
polation type must be portrayed via its type.

Theorem 3.2. In case n=2m (even) and : is as (2.6), the quadrature
formula (3.2) is of :-interpolation type iff its coefficients satisfy

Hj=
1

22$n(tj) |
2?

0
w({) 2n({)

sin[(1�2)({&tj)+:&,]
sin(:&,)

_csc
{&tj

2
d{ ( j=1, ..., n). (3.8)

Proof. By (2.7), we have (3.8) � Hj=D(T2
n, j) � Q2D

n f =DT2
n f �

H T
n (:)�ty[Q2D

n ].
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Remark 3.1. It is possible that a quadrature formula of :-interpolation
type is possibly the same as a quadrature formula of ;-interpolation type
though :{;, for example, the quadrature formula with the highest tri-
gonometric precision established in [1]. But in this instance the set of
nodes [tj] is not arbitrary.

Example 3.1. The quadrature formula (3.2) is of trigonometric inter-
polation type when n=2m&1 or of :-interpolation type when n=2m,
where : is given in Example 2.1, iff its coefficients are

Hj={
1

22$n(tj) |
2?

0
w({) 2n({) csc

{&tj

2
d{,

1
22$n(tj) |

2?

0
w({) 2n({) cot

{&tj

2
d{,

if n=2m&1,

if n=2m,
(3.9)

and the remainder is

R2D
n f =D$2

n f, (3.10)

where $2
n is as (2.9).

Such a quadrature formula of trigonometric interpolation type is said to
be of normal form. From now on, we only discuss the quadrature formulas
of normal form although the method may be applied to general cases. First
we extend (1.1) to the whole complex plane C,

(H f )(z)=|
2?

0
w({) f ({) cot

{&z
2

d{, z # C, (3.11)

and introduce another operator with the cosecant kernel for the function
in the class H� 2? (the class of the Ho� lder continuous functions with
f ({+2?)=&f ({)):

(H� f )(z)=|
2?

0
w({) f ({) csc

{&z
2

d{, z # C. (3.12)

When z is a real number, we understand (3.12) as the Cauchy principal
value integral, in particular, for j=\1, ..., (H� f )(2 j?)=(&1) j (H� f )(0) with

(H� f )(0) := lim
$ � 0 |

2?&$

$
w({) f ({) csc

{
2

d{

=|
2?

0
w({) f ({) sin

{
2

d{+|
2?

0
w({) f ({) cos

{
2

cot
{
2

d{. (3.13)
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We point out that both (H f )(z) and (H� f )(z) are not continuous at z={
({ # R) except when w({) f ({)=0. In fact, introduce the functions

(H+f )(z)={(H f )(z)
2?iw(t) f (t)+(H f )(t)

if Im z>0,
if z=t, Im z=0;

(3.14)

(H&f )(z)={(H f )(z)
&2?iw(t) f (t)+(H f )(t)

if Im z<0,
if z=t, Im z=0;

(3.15)

(H� +f )(z)={(H� f )(z)
2?iw(t) f (t)+(H� f )(t)

if Im z>0,
if z=t, Im z=0;

(3.16)

(H� &f )(z)={(H� f )(z)
&2?iw(t) f (t)+(H� f )(t)

if Im z<0,
if z=t, Im z=0;

(3.17)

then, by the Plemelj�Privalov theorem [5, 7], we know that H+f and H&f
are, respectively, analytic in C+=[z, Im z>0] and C&=[z, Im z<0], as
well as in the class H2? on C+=[z, Im z�0] and C&=[z, Im z�0]. By
analogy, H� +f and H� &f are, respectively, analytic in C+ and C&, as well
as in the class H� 2? on C+ and C&. We write them as H+f # A+H2? ,
H+f # A&H2? , H� +f # A+H� 2? , and H� &f # A&H� 2? , respectively.

Remark 3.2. From the above discussion we know that H+: H2? �
A+H2? , H&: H2? � A&H2? , H� + : H� 2? � A+H� 2? , and H� : H� 2? � A&H� 2? .

Let

2n*(z)={(H� 2n)(z),
(H2n)(z),

if n=2m&1,
if n=2m.

(3.18)

This function is called the associated function of 2n with respect to the
weight w(t). It plays an important role in the following discussions. Now
we may rewrite the coefficients, given by (3.9), of the quadrature formula
of normal form as

Hj=
2n*(tj)
22$n(tj)

( j=1, ..., n). (3.19)

In addition, let

(2n*)\ (z)={(H� \2n)(z),
(H\2n)(z),

if n=2m&1,
if n=2m.

(3.20)

Remark 3.3. (2n*)+ (tj)=(2n*)&(tj)=2n*(tj) by (3.14)�(3.18), therefore,
by Remark 3.2, 2n* is Ho� lder continuous at z=tj and on each of the
straight lines z=tj+iy (&�< y<+�) and z=x+ic (&�<x<+�,
c is an arbitrary real constant).
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Theorem 3.3. If f # AP(Dr), then

R2D
n f =&

1
4?i |

�Dr

f (z)
2n*(z)
2n(z)

dz, (3.21)

or

R2D
n f =&

1
2?

Re {i |
2?+ir

ir
f (z)

2n*(z)
2n(z)

dz= (3.22)

and

|R2D
n f |�"2n*

2n "r
& f &r . (3.23)

Proof. We only prove the case n=2m&1. Noting Remark 2.2 and the
periodicity of the integrand, we have that

1
4?i |

�Dr

f (z)
2n(z)

csc
z&{

2
dz

=
1

4?i {|
2?&ir

&ir
&|

2?+ir

ir = f (z)
2n(z)

csc
z&{

2
dz, (3.24)

hence, by (3.10), (2.24), (3.24), and (3.18), we get

R2D
n f=

1
4?i {|

2?+ir

ir
&|

2?&ir

&ir = f (z)
2n*(z)
2n(z)

dz

=&
1

4?i |
�Dr

f (z)
2n*(z)
2n(z)

dz.

Of course, in the case 2n(0)=0, the last integral above should be under-
stood as the Cauchy principal value integral which actually exists because
2n* is Ho� lder continuous on �Dr from Remark 3.3. The rest of the proof is
obvious.

Corollary 3.1. When

f # {H T
m&1 ,

H T
m(:),

if n=2m&1,
if n=2m,

where : is that given in Example 2.1, then

1
4?i |

�Dr

f (z)
2n*(z)
2n(z)

dz=0,
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in particular,

1
4?i |

�Dr

2n*(z)
2n(z)

dz=0.

Example 3.2. For illustration, we consider the case w({)=1 and
2n({)=sin( 1

2 n{+%) with arbitrary real %. In this case, tj=(2�n)
( j?+[&%]?) ( j=0, ..., n&1) and

2?ei((1�2) nz+%), if Im z>0,

2n*(z)={2? cos( 1
2n{+%), if z={, Im z=0, (3.25)

2?e&i((1�2) nz+%), if Im z<0,

Q2D
n f =

2?
n

:
n&1

j=0

f (tj), (3.26)

and if f # AP(Dr), from (3.23),

|R2D
n f |�2?(coth 1

2 nr&1) & f &r=O(e&nr) (as n � �). (3.27)

We get also the following corollary noting

&2n*&�coth ( 1
2r) D1. (3.28)

Corollary 3.2. If f # AP(Dr), then

|R2D
n f |�coth ( 1

2r) D1 sinh&n( 1
2r) & f &r . (3.29)

In particular, when r>2 ln(1+- 2), then |R2D
n f | � 0 as n � �.

4. QUADRATURE FORMULAS FOR SINGULAR INTEGRALS

In this section, we discuss quadrature formulas for (1.1). We need further
some properties of the associated function 2n*.

Lemma 4.1. When t # [0, 2?) and t{tj ( j=1, ..., n),

2n*(t)
2n(t)

=(H1)(t)& :
n

j=1

Hj cot
tj&t

2
.

243QUADRATURE FORMULAS



File: DISTL2 316614 . By:AK . Date:09:04:98 . Time:13:38 LOP8M. V8.B. Page 01:01
Codes: 2389 Signs: 869 . Length: 45 pic 0 pts, 190 mm

Proof. When n=2m&1, by (2.14), Lemma 2.3, and Theorem 3.1, we
have

(H� 2n)({)=|
2?

0
w({)4n ({, t) d{+2n(t) |

2?

0
w({) cot

{&t
2

d{

=& :
n

j=1

Hj2n(t) cot
tj&t

2
+2n(t)(H1)(t).

This is just what we want to prove. The proof for the case of n=2m is
similar.

We have pointed out before that 2n* is continuous at z=tj . Now we
further prove that it has the following sectional derivatives at z=tj .

Lemma 4.2. Let

2n, j ({)=2n({) csc
{&tj

2
, (4.1)

then

(2n* |R )$ (tj)=: lim
z � 0, z # R

2n*(z)&2n*(tj)
z&tj

={
1
2 (H2n, j)(tj),
1
2 (H� 2n, j)(tj),

if n=2m&1,
if n=2m;

(4.2)

(2n* |Dr
+)$ (tj)=: lim

z � 0, z # Dr
+

2n*(z)&2n*(tj)
z&tj

={
1
2 (H+2n, j)(tj),
1
2 (H� +2n, j)(tj),

if n=2m&1,
if n=2m;

(4.3)

(2n* |Dr
&)$ (tj)=: lim

z � 0, z # Dr
&

2n*(z)&2n*(tj)
z&tj

={
1
2 (H&2n, j)(tj),
1
2 (H� &2n, j)(tj),

if n=2m&1,
if n=2m.

(4.4)

Proof. We only prove the case n=2m&1. Noting

2n*(z)&2n*(tj)
z&tj

=
sin(1�2)(z&tj)

z&tj
(H2n, j)(z)+

cos(1�2)(z&tj)&1
z&tj

D2n, j ,

by Remark 3.2, we obtain (4.2)�(4.4).
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Remark 4.1. We know that (4.2) is the derivative of the restricted func-
tion 2n* |R of 2n* on R, which is often used. For simplicity, we agree that
the derivative (2n* | R )$ (tj) is always denoted by (2n*)$ (tj).

Now we use the method of separation of singularities to derive quad-
rature formulas for the singular integral (1.1).

(H f )(t)=|
2?

0
w({)[ f ({)& f (t)] cot

{&t
2

d{+ f (t)(H1)(t)

r :
n

j=1

Hj[ f (tj)& f (t)] cot
tj&t

2
+ f (t)(H1)(t)

= :
n

j=1

Hj f (tj) cot
tj&t

2
+

2n*(t)
2n(t)

f (t).

In the last equality we have used (2.12), Example 3.1, and Lemma 4.1.
For

(Q2H
n f )(t)= :

n

j=1

Hj cot
tj&t

2
f (tj)+

2n*(t)
2n(t)

f (t), (4.5)

we obtain the quadrature formula of (1.1):

(H f )(t)r(Q2H
n f )(t). (4.6)

In the above quadrature sum, when t coincides with some tj , we must
understand (Q2D

n f )(t) as its limit value, namely,

(Q2H
n f )(tj)= :

n

r=1, r{ j

Hr cot
tr&tj

2
f (tr)+Kj f (tj)+2Hj f $(tj), (4.7)

where

Kj=
(2n*)$ (tj)

2$n(tj)
&Hj

2"n(tj)
2$n(tj)

, (4.8)

with (2n*)$ (tj) given in (4.2) of Lemma 4.2 (recalling the agreement in
Remark 4.1). In fact, by (3.19) and (4.1)

Kj =lim
t � tj _Hj cot

tj&t
2

+
2n*(t)
2n(t) &=2 _ 2n*(t)

2n, j (t)&
$

t=tj

=
(2n*)$ (tj)

2$n(tj)
&Hj

2"n(tj)
2$n(tj)

.

Summarizing the above results, we have the following theorem.
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Theorem 4.1. If f # C$2? , then

(H f )(t)=(Q2H
n f )(t)+(R2H

n f )(t), (4.9)

where

(Q2H
n f )(t)={

:
n

j=1

Hj f (tj) cot
tj&t

2
+

2n*(t)
2n(t)

f (t),

(4.10)
if t{tj ,

:
n

r=1, r{ j

Hr cot
tr&tj

2
f (tr)+Kj f (tj)+2Hj f $(tj),

if t=tj ,

where 2n*, Hj , Kj are given by (3.18), (3.19), (4.8), respectively, and

(R2H
n f )(t)=R2D

n Ft=|
2?

0
w({)($2

n Ft)({) d{. (4.11)

We treat the concepts of the trigonometric precision and the type of the
singular quadrature formula (4.9) similarly to those of (3.2) in Defini-
tion 3.1 and Definition 3.3.

Corollary 4.1. For (4.6), pr(Q2H
n )�[ 1

2 (n&1)] and ty[Q2H
n ]$H T

n (,)
when n=2m, with , being just the characteristic number of 2n .

Remark 4.2. We point out that (4.6) need not be of interpolation type.
In fact, if it is of interpolation type, then it is necessary that pr(Q2H

n )�
[ 1

2 n] because the number of its nodes [tj , t] is n+1 instead of n, but only
pr(Q2H

n )�[ 1
2 (n&1)] from Corollary 4.1. So, the quadrature formula (4.6)

derived via the method of separation of singularities is called the quad-
rature formula of quasi-interpolation type. This fact is very surprising and
does not happen in the corresponding discussion of singular integrals with
Cauchy kernel. The quadrature formula of interpolation type for (1.1) will
be discussed in another paper.

Theorem 4.2. If f # AP(Dr), then the remainder of (4.9)

(R2H
n f )(t)=&

1
4?i |

�Dr

f (z)
2n*(z)
2n(z)

cot
z&t

2
dz, (4.12)

(R2H
n f )(t)=&

1
2?

Re {i |
2?+ir

ir
f (z)

2n*(z)
2n(z)

cot
z&t

2
dz= , (4.13)
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and

&R2H
n f &�coth \r

2+ & f &r "2n*
2n "r

. (4.14)

Remark 4.3. In the first place, we need to explain in detail the integral
in (4.12): when 2n(0)=0 and t{0(2?) it may be understood as the
Cauchy principal value integral by Remark 3.3; when 2n(0){0 and
t=0(2?) it may be understood as the (one-sided) Cauchy principal value
integral because both (2n*)+ (0) and (2n*)& (0) exist by Remark 3.2; when
both 2n(0)=0 and t=0(2?) it may be understood as the (one-sided)
higher order singular integral because both (2n* | �Dr

+)$ (0) and
(2n* |�Dr

&)$ (0) exist by Lemma 4.2. The definition of the (one-sided)
singular integral may be seen in [8, 9].

Under this interpretation, from (3.21) and (4.11), we get

(R2H
n f )(t)=&

1
4?i |

�Dr

[ f (z)& f (t)] cot
z&t

2
2n*(z)
2n(z)

dz

= &
1

4?i |
�Dr

f (z)
2n*(z)
2n(z)

cot
z&t

2
dz

+
f (t)
4?i |

�Dr

2n*(z)
2n(z)

cot
z&t

2
dz.

Thus, we only need to prove the following lemma which possesses inde-
pendent significance.

Lemma 4.3.

1
4?i |

�Dr

2n*(z)
2n(z)

cot
z&t

2
dz=0. (4.15)

Proof. First assume that t{tj . By Remark 3.2 and the extended residue
theorem [5],

1
2?i |

�Dr
+

(2n*)+ (z)
2n(z)

cot
z&t

2
dz=sp(t) res(t)+ :

n

j=1

sp(tj) res(tj), (4.16)

247QUADRATURE FORMULAS



File: DISTL2 316618 . By:AK . Date:09:04:98 . Time:13:38 LOP8M. V8.B. Page 01:01
Codes: 2569 Signs: 1135 . Length: 45 pic 0 pts, 190 mm

where sp(x) denotes the span at x with respect to D+
r and res(x) the

residue of the integrand [(2n*)+(z)�2n(z)] cot1
2 (z&t) at x. Noting

sp(t)= 1
2 , sp(tj)= 1

2 since D+
r is a rectangular domain, we get

1
2?i |

�Dr
+

(2n*)+ (z)
2n(z)

cot
z&t

2
dz

=
(2n*)+ (t)

2n(t)
+ :

n

j=1

(2n*)+ (tj)
22$n(tj)

cot
tj&t

2
. (4.17)

It must be pointed out that one of t and tj is possibly 0, say t1=0, in
this instance sp(t1)=1�4, but since the periodicity of the integrand
[(2n*)+ (z)�2n(z)] cot 1

2 (z&t), 2? is also a singular point, hence, in the
sum of the right-hand side of (4.16) we must replace the term sp(t1) res(t1)
by the sum sp(0) res(0)+sp(2?) res(2?) which still is equal to 1

2res(t1).
Therefore (4.17) still holds. In the same way, we have

1
2?i |

�Dr
&

(2n*)& (z)
2n(z)

cot
z&t

2
dz

=
(2n*)& (t)

2n(t)
+ :

n

j=1

(2n*)& (tj)
22$n(tj)

cot
tj&t

2
. (4.18)

From (3.14)�(3.15) and (3.20), we know

{(2n*)+ ({)+(2n*)& ({)=22n*({),
(2n*)+ ({)&(2n*)&({)=4?iw({) 2n({),

{ # R. (4.19)

Therefore, by Lemma 4.1 and (4.17)�(4.19), we obtain

1
4?i |

�Dr

2n*(z)
2n(z)

cot
z&t

2
dz

=
1

4?i |
�Dr

+

(2n*)+ (z)
2n(z)

cot
z&t

2
dz+

1
4?i |�Dr

&

(2n*)& (z)
2n(z)

cot
z&t

2
dz

&
1

4?i |
2?

0

(2n*)+ ({)&(2n*)& ({)
2n({)

cot
{&t

2
d{

=
2n*(t)
2n(t)

+ :
n

j=1

Hj cot
tj&t

2
&(H1)(t)=0.
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Applying the technique used in (3.24), we also get

1
4?i |

�Dr

2n*(z)
2n(z)

cot
z&tj

2
dz

=
1

4?i {|
2?&ir

&ir
&|

2?+ir

ir = 2n*(z)
2n(z)

cot
z&tj

2
dz

=lim
t � tj

1
4?i {|

2?&ir

&ir
&|

2?+ir

ir = 2n*(z)
2n(z)

cot
z&t

2
dz

=lim
t � tj

1
4?i |

�Dr

2n*(z)
2n(z)

cot
z&t

2
dz=0.

This completes the proof of this lemma and hence Theorem 4.2.

Corollary 4.2 When

f # {H T
m&1 ,

H T
m(,),

if n=2m&1,
if n=2m,

where , is the characteristic number of 2n , then

1
4?i |�Dr

f (z)
2n*(z)
2n(z)

cot
z&t

2
dz=0.

Example 4.1. In the case stated in Example 3.2, we have

(Q2H
n f )(t)={

2?
n

:
n&1

j=0

f (tj) cot
tj&t

2
+2? cot \1

2
nt+%+ f (t),

(4.20)
if t{tj ,

2?
n

:
n&1

j=0, j{r

f (tj) cot
tj&tr

2
+

4?
n

f $(tr),

if t=tr ,

where tj=(2�n)( j?+[&%]?) and if f # AP(Dr), from (4.14)

&R2H
n f &�2? coth 1

2r[coth 1
2 nr&1] & f &r . (4.21)

It follows that &R2H
n f &=O(e&nr) as n � �. The result with %=0 is just the

same as that obtained by Chawla, Ramakrishnan, and Ioakimidis [10, 11].
It should be noted that the first two authors obtained this quadrature
formula only for the case n is even and Ioakimidis did not give any
estimate of the remainder.
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Corollary 4.3. If f # AP(Dr), then, from (4.14)

&R2H
n f &�coth ( 1

2r) D1(sinh 1
2r)&n & f &r . (4.22)

In particular, when r>2 ln(1+- 2) then &R2H
n f & � 0 as n � �.

We have seen that the singular quadrature operator Q2H
n must be

defined on C$2? , or rather on C$2?(2n) which denotes the class of all func-
tions belonging to C2? and with derivatives at tj ( j=1, ..., n). This is not
convenient in applications. For this reason, we introduce an interpolation
operator as

L2
n : C2? � C$2?(2n) (4.23)

with the interpolation property

(L2
n f )(tj)= f (tj) ( j=1, ..., n). (4.24)

The trigonometric precision of L2
n is defined by

pr(L2
n )=max[ j, H T

j �ker (I&L2
n )]. (4.25)

We agree that pr(L2
n )=&� if 1 � ker (I&L2

n ) and pr(L2
n )=+� if

H T
j �ker (I&L2

n ) for any integer j.
There are many such operators, for example, T2

n given in (2.3). Replacing
f by L2

n f in the quadrature operator (4.10), we obtain Q2H
n L2

n f, denoted
as (QL)2H

n , i.e.,

((QL)2H
n f )(t)

={
:
n

j=1

Hj cot
tj&t

2
f (tj)+

2n*(t)
2n(t)

(L2
n f )(t),

(4.26)
if t{tj ,

:
n

r=1, r{ j

Hr cot
tr&tj

2
f (tr)+Kj f (tj)+2Hj (L2

n f )$ (tj),

if t=tj ,

where Kj is as in (4.8).
Obviously, we have

pr((QL)2H
n )�min[pr(Q2H

n ), pr(L2
n )]. (4.27)
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Taking L2
n =I on C$2? , we reobtain the previous result. For another

example, taking L2
n =T2

n where T2
n is given as in (2.10), we have

((QT)2H
n f )(t)= :

n

j=1

Aj (t) f (tj), (4.28)

where

Aj (t)={
4n*(t, tj)
22$n(tj)

,

(2n*)$ (tj)
2$n(tj)

,

if t{tj ,

if t=tj ,
(4.29)

in which (2n*)$ (tj) is (4.2) in Lemma 4.2 and

4n*({, t)={_
2n*({)&2n*(t) cos

{&t
2 & csc

{&t
2

,

[2n*({)&2n*(t)] cot
{&t

2
,

if n=2m&1,

if n=2m.
(4.30)

Obviously, by Lemma 2.1 and Corollary 4.1,

pr((QT)2H
n )�[ 1

2 (n&1)]. (4.31)

Hence, (4.28) is of trigonometric interpolation type (noting the number of
its nodes is n). This generalizes the result in [12].

Example 4.2. In the case given in Example 4.1, for simplicity, with
%=0, (4.29) becomes

Aj (t)={
2?
n _cos

n(t&tj)
2

&cos
t&tj

2 & csc
t&tj

2
,

(&1) j 2?
n _cos

n
2

t&cos
n
2

tj & cot
t&tj

2
,

if n is odd,

if n is even,
(4.32)

and Aj (tj)=0. This is just the result given in [13] by S. Krenk.

5. CONVERGENCE

In this section, we discuss the convergence of the quadrature formulas
established above. Given a sequence [2n], we obtain a sequence of quad-
rature formulas of interpolation type Q2D

n . If limn � � R2D
n f =0, we say it

is convergent for f. For example, (3.26) is convergent for any f # AP(Dr).
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In applications, we need to consider more general functions and weights.
We assume that the spaces considered are equipped with Chebyshev's
norm, namely, the maximum of the absolute values of a function. We now
rewrite the coefficients Hj of Q2D

n as Hn, j to avoid confusion.
Obviously, the norm of the quadrature operator Q2D

n is

&Q2D
n &= :

n

j=1

|Hn, j |, (5.1)

and the norm of the integral operator D is

&D&=D1. (5.2)

Theorem 5.1. If &Q2D
n &=o(n+) (0<+�1), then the sequence [Q2D

n ] is
convergent for f # H +

2? (the class of functions with Ho� lder index + in H2?).
More precisely, |R2D

n f |�12 (&D&+&Q2D
n &) |( f, 1�m) for f # C2? , where

|( f, } ) is the modulus of continuity of f and m=[ 1
2 (n&1)].

Proof. Denoting the best approximating trigonometric polynomial of
degree not greater than m of f by Jm , then & f&Jm&�12|( f, 1�m) by
Jackson's theorem. Noting that Q2D

n is of interpolation type, we get
R2D

n f =(D&Q2D
n )( f &Jm), therefore |R2D

n f |�12(&D&+&Q2D
n &) |( f, 1�m).

Furthermore, limn � � R2D
n f =0 for f # H +

2? by noting that &Q2D
n &=o(n+).

Remark 5.1. If [Q2D
n ] is a sequence of non-negative operators, i.e.,

Hn, j�0 ( j=1, ..., n), for example, the sequence of the quadrature formulas
with the highest trigonometric precision established in [1] ((3.26) is just a
special example), then &Q2D

n &=�n
j=1 Hn, j=D1=&D& holds and the

sequence is convergent for any f # C2? .

Now we discuss the convergence of the sequence [Q2H
n ].

Lemma 5.1. If f # C$2? , then |(F, h)�C|( f $, h), where F is given in
(2.12) and C is a constant independent of h.

Proof. Assume h�?�4 first. When max[ |2{|, |2t|]�h, we come to
estimate the difference 2F=F({+2{, t+2t)&F({, t).

When 0�{&t�?, we set

F*({, t)={
f ({)& f (t)

{&t
, if {{t,

(5.3)

f $(t), if {=t,

,(x)=x cot x, &?<x<?. (5.4)
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It is easy to check

max
|x| �(1�2) ?

|,(x)|=1, max
|x|�(3�4) ?

|,$(x)|=|,$( 3
4?)|<6 (5.5)

and

F({, t)=2F*({, t) , \{&t
2 + . (5.6)

Now we have, by Lemma 2 in [6],

|2F |�2( |2F*|+6 & f $& h)�2(|( f $, h)+6 & f $& h). (5.7)

When ?�{&t�2?, setting

F*({, t)={
f ({)& f (2?+t)

{&(2?+t)
, if {�t (mod 2?),

(58)

f $(t), if {#t (mod 2?),

we again have

F({, t)=2F*({, t) , \?&
{&t

2 + . (5.9)

Now working in a way analogous to that used above, we can show that
(5.7) still holds. From the property of the modulus of continuity,

1
2

|( f $, ?�4)
?�4

�
|( f $, h)

h
. (5.10)

We treat f ${const (otherwise, f =const since f # C2? and hence F#0,
which is the trivial case), therefore, by noting (5.7) and (5.10),

|(F, h)�C|( f $, h) (h�?�4), (5.11)

where

C=2 _1+
3? & f $&

|( f $, ?�4)& . (5.12)

If h>?�4, then

|(F, h)�2 &F&�
4 & f $&

|( f $, ?�4)
|( f $, h). (5.13)

Therefore (5.11) is true for any h.
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By this lemma, (4.11), and Theorem 5.1, we have the following theorem.

Theorem 5.2. If &Q2D
n &=o(n+) (0<+�1), then the sequence [Q2H

n ] is
convergent for f # H 1, +

2? (the class of all functions f $ # H +
2?), i.e., limn � �

&R2H
n f &=0. More precisely, &R2H

n f &�12C(&D&+&Q2D
n &) |( f $, 1�m) for

f $ # C2? , where m=[ 1
2 (n&1)] and C is 0 if f =const or as in (5.12) if not.

Remark 5.2. If [Q2D
n ] is a sequence of non-negative operators, for

example, those established in [1] or (3.26), then [Q2H
n ] is convergent for

any f # C$2? .

The following lemma will be also used in the sequel (cf. [14, Hilfssatz 2,
Sect. 2, Kapitel 2]).

Lemma 5.2. Suppose that f # C2? . If there exists a sequence of trigonometric
polynomials Tn # H T

n ( j=1, ..., ) such that

& f&Tn &�
A1

n: (A1=const, 0<:�1), (5.14)

then

M[ fn , ;]�
A2

n:&; , (5.15)

where fn(t)= f (t)&Tn(t), 0<;�: if 0<:<1 or 0<;<1 if :=1, A2 is
a constant only depending on : and ;, and

M[ f, ;]= sup
|{&t|>0

| f ({)& f (t)|
|{&t|; . (5.16)

Theorem 5.3. If &(QL)2H
n &=o(n+) (0<+�1) and pr((QL)2H

n )�m=
[ 1

2 (n&1)], then the sequence [(QL)2H
n ] is convergent for f # H +

2? , i.e.,
limn � � &(RL)2H

n f &=0, where (RL)2H
n f =H f &(QL)2H

n f.

Proof. Denoting the best approximate polynomial of degree not greater
than m of f by Jm and fm({)= f ({)&Jm({), then, by the Jackson theorem,
& fm&�12|( f, 1�m), and hence, for 0<=<+,

|(H fm)(t)|= } fm(t)(H1)(t)+|
2?

0
w({)[ fm({)& fm(t)] cot

{&t
2

d{ }
�12 &H1& | \f,

1
m+

+ } |
?+t

&?+t
w({)

fm({)& fm(t)
{&t _({&t) cot

{&t
2 & d{ }
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�12 &H1& | \f,
1
m++

2A2 &w&
m+&= |

?+t

&?+t

d{
|{&t| 1&=

(by Lemma 5.2 and (5.5))

�
12M[ f, +] &H1&

m+ +
4?=A2 &w&

=m+&= (by (5.16)),

where A2 is a constant only depending on + and =. Again

&(QL)2H
n fm&�&(QL)2H

n & & fm&�
12M[ f, +] &(QL)2H

n &
m+ ,

and, by pr((QL)2H
n )�m, (RL)2H

n f =(RL)2H
n fm , we get limn � � &(RL)2H

n f &
=0.

Corollary 5.1. If &(QT)2H
n &=o(n+) (0<+�1), then the sequence

[(QT)2H
n ] is convergent for f # H +

2? .

Remark 5.3. Because the functions considered are periodic, for more
convenience, we regard K as the factor group (&�, +�) mod 2? under
addition and equipped with the value |x~ |K =|x0 | for x~ # K, where x~ is the
congruence class of x, x0 the congruence point lying in [&?, ?). In general,
we use the symbol {t to denote the congruence point of {, lying in
[&?+t, ?+t). By this view, (K, | } |K ) is a compact group, which will be
very convenient in the following example.

Example 5.1. For the (QT)2H
n given in Example 4.2, we can prove that

&(QT)2H
n &�" :

n&1

j=0

|Aj (t)| "�4?2+8 ln n, (5.17)

hence, (4.28) is convergent for f # H +
2? . In fact, we rearrange [(tj)t ,

j=0, ..., n&1] as [tk*, k=1, ..., n], according to

t1*<t2*< } } } <tn*. (5.18)

Obviously,

t*k+1&tn*=
2?
n

, for k=1, ..., n&1, (5.19)

and there exists an integer v such that

t*v�t<t*v+1. (5.20)
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Writing

Ak*(t)=Aj (t) when tk*=(tj)t ,

F1(t)= :
v&2

k=1

|Ak*(t)|, F2(t)= :
n

k=v+3

|Ak*(t)|,

with assumption F1(t)=0 if v<3 and f2(t)=0 if v>n&3, we have, for
odd n,

|Ak*(t)|=
2?
n } 2 sin

n+1
4

(t&tk*) sin
n&1

4
(t&tk*) csc

t&tk*
2 }

�2? } t&tk*
2

csc
t&tk*

2 } (by |sin n{|�n |{| )

�?2. (5.21)

In the last inequality we have used

|sin x|�
2
?

|x| for |x|�
?
2

. (5.22)

Then, by (5.19) and (5.22),

F1(t)= :
v&2

k=1 } |
t*k+1

t*k _cos
n(t&tk*)

2
&cos

t&tj*
2 & csc

t&tk*
2

dx }
�2 |

t*v&1

&?+t
csc

t&x
2

dx=&4 ln cot
t&t*v&1

4

�&4 ln sin
?
2n

�4 ln n. (5.23)

We obtain, in the same manner,

&F2&�4 ln n. (5.24)

For even n, by working in a similar way, (5.21) and (5.23)�(5.24) are again
obtained. Finally, (5.17) results from (5.21) and (5.23)�(5.24).

Remark 5.4. It is rather difficult to estimate the order of &(QT)2H
n & in

the general case.
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